Phospholipid scramblase-3 regulates cardiolipin de novo biosynthesis and its resynthesis in growing HeLa cells.

نویسندگان

  • Quyen Van
  • Jihua Liu
  • Biao Lu
  • Kenneth R Feingold
  • Yuguang Shi
  • Ray M Lee
  • Grant M Hatch
چکیده

PLS3 (phospholipid scramblase-3) is a new member of the family of phospholipid scramblases and transports CL (cardiolipin) from the inner to the outer mitochondrial membrane. In the present paper we examined whether changing the levels of functional PLS3 in HeLa cells altered de novo CL biosynthesis and its resynthesis. HeLa cells overexpressing PLS3 or expressing a disrupted PLS3 (F258V) or control were incubated with [1,3-3H]glycerol and radioactivity incorporated into CL was determined. CL biosynthesis from [1,3-3H]glycerol was increased 1.8-fold in PLS3 cells and 2.1-fold in F258V cells compared with control. This was due to a 64% (P<0.05) and 2.6-fold (P<0.05) elevation in CL synthase activity in PLS3 and F258V cells respectively, compared with control, and not due to changes in phosphatidylglycerolphosphate synthase activity. The increase in CL synthase activity in these cells was due to an increase in its mRNA expression. In contrast, resynthesis of CL from [1-14C]linoleic acid was reduced 52% (P<0.05) in PLS3 and 45% (P<0.05) in F258V cells compared with control and this was due to a reduction in mitochondrial monolysocardiolipin acyltransferase activity. Although protein levels of mitochondrial monolysocardiolipin acyltransferase were unaltered, activity and mRNA expression of endoplasmic reticulum monolysocardiolipin acyltransferase was upregulated in PLS3 and F258V cells compared with controls. These data indicate that the CL resynthesis in HeLa cells is sensitive to the mitochondrial localization of CL and not the level of the reacylating enzymes. Alterations in functional PLS3 levels in PLS3 or F258V cells did not affect the mitochondrial decarboxylation of phosphatidylserine to phosphatidylethanolamine indicating that the biosynthetic changes to CL were specific for this mitochondrial phospholipid. We hypothesize that the cardiolipin resynthesis machinery in the cell 'senses' altered levels of CL on mitochondrial membranes and that de novo CL biosynthesis is up-regulated in HeLa cells as a compensatory mechanism in response to altered movement of mitochondrial CL. The results identify PLS3 as a novel regulator of CL de novo biosynthesis and its resynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the mechanism of the increase in cardiolipin biosynthesis and resynthesis in hepatocytes during rat liver regeneration.

CL (cardiolipin) is a major mitochondrial membrane phospholipid important for the regulation of mitochondrial function. We examined CL de novo biosynthesis and its resynthesis in isolated rat liver hepatocytes prepared 48 h subsequent to two-thirds PHx (partial hepatectomy). The pool size of CL and its de novo biosynthesis from [1,3-(3)H]glycerol were increased 3.3-fold (P<0.05) and 3.1-fold (P...

متن کامل

Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-delta induces its activation and facilitates mitochondrial targeting of tBid.

Phospholipid scramblase 3 (PLS3) is a member of the phospholipid scramblase family present in mitochondria. PLS3 plays an important role in regulation of mitochondrial morphology, respiratory function, and apoptotic responses. PLS3 is phosphorylated by PKC-delta at Thr21 and is the mitochondrial target of PKC-delta-induced apoptosis. Cells with overexpression of PLS3, but not the phosphoinhibit...

متن کامل

Cardiolipin synthesis is required to support human cholesterol biosynthesis from palmitate upon serum removal in Hela cells.

We examined whether cardiolipin (CL) synthesis was required to support cholesterol (CH) production from palmitate in Hela cells. Knockdown of human cardiolipin synthase-1 (hCLS1) in Hela cells has been shown to reduce CL synthesis. Therefore Hela cells stably expressing shRNA for hCLS1 and mock control cells were incubated for 16 h with [14C(U)]palmitate bound to albumin (1:1 molar ratio) in th...

متن کامل

Stimulation of cardiac cardiolipin biosynthesis by PPAR activation

The role of peroxisome proliferator-activated receptor (PPAR )-stimulated phospholipase A 2 (PLA 2 ) in cardiac mitochondrial cardiolipin (CL) biosynthesis was examined in both in vivo and in vitro models. Treatment of rat heart H9c2 cells with clofibrate increased the expression and activity of 14 kDa PLA 2 but did not affect the pool size of CL. Clofibrate treatment stimulated de novo CL bios...

متن کامل

Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response.

Phospholipid scramblase 3 (PLS3) is a newly recognized member of a family of proteins responsible for phospholipid translocation between two lipid compartments. To study PLS3 function in mitochondria, we disrupted its conserved calcium-binding motif yielding an inactive mutant PLS3(F258V). Cells transfected with PLS3(F258V) exhibited reduced proliferative capacity. Mitochondrial analysis reveal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 401 1  شماره 

صفحات  -

تاریخ انتشار 2007